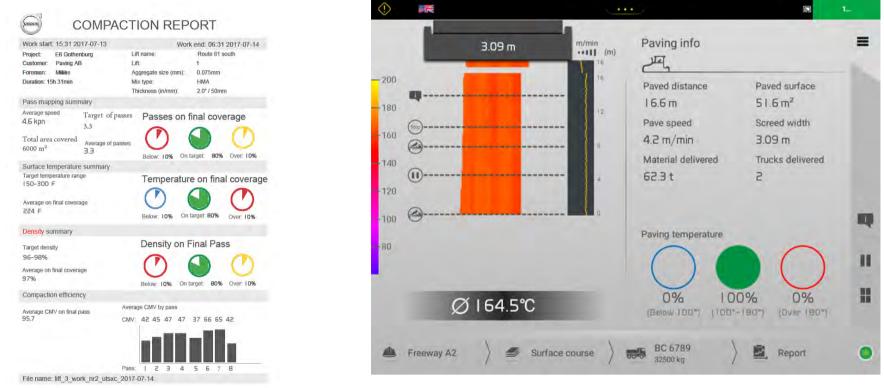
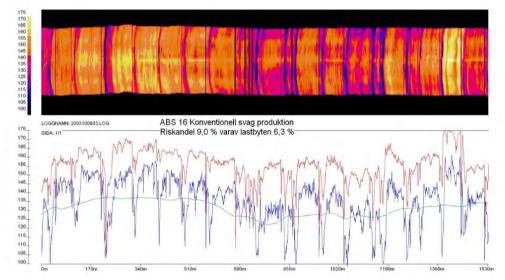

CONSTRUCTION 4.0



MAYBE THIS ?

BUT DEFINATELY THIS



Department, Name, Document name, Security class 4 Date

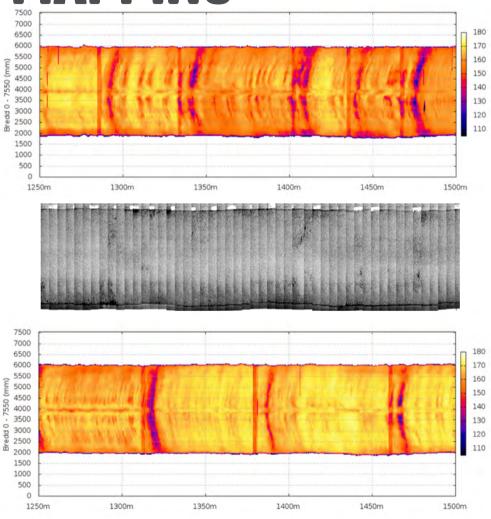
THERMAL MAPPING

Poor Thermal uniformity

Here the effect of thermal segregation can be seen for different parts of the process.

Measured as a percentage of the area behind the paver that is below what is the minimum compaction temperature.

9% of the area is uncompactable (of which 6,3 % is because of the trucks).


THERMAL MAPPING

E20 Stockholm 1998 - 2013

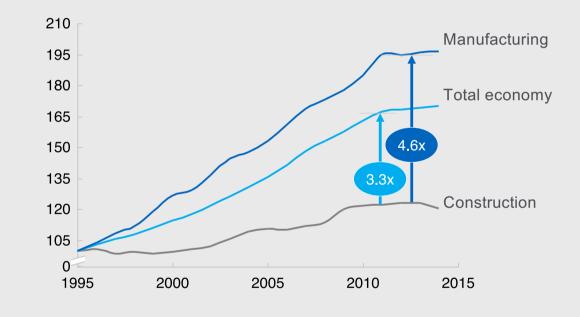
Wearing Course

Binder Course

CONSTRUCTION 4.0

1st Industrial Revolution – Late 18th Century – Steam Engine

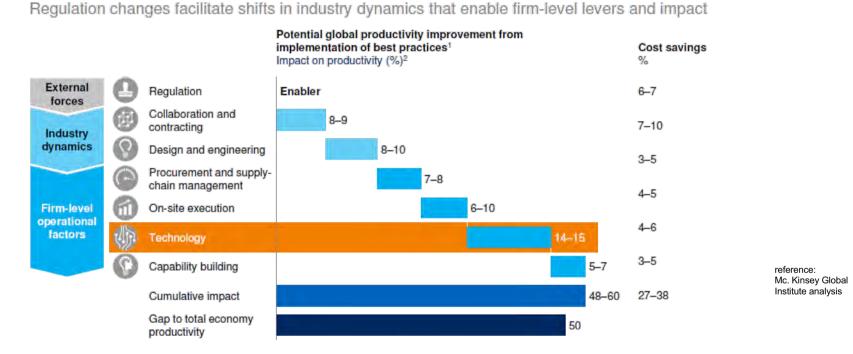
2nd Industrial Revolution – Late 19th Century – Abundant mass Energy


3rd Industrial Revolution - 70's of the 20th Century – Process controlled mass production- Computers

4th Industrial Revolution – Early 21st Century – Internet, sensors, online, AI

BIM – Building Information Modelling, Building Information Model or Building Information Management

Mckinsey Analysis The construction industry is behind ...


Global productivity growth trends

Real gross value added per hour worked by persons engaged, indexed 1995 = 100.

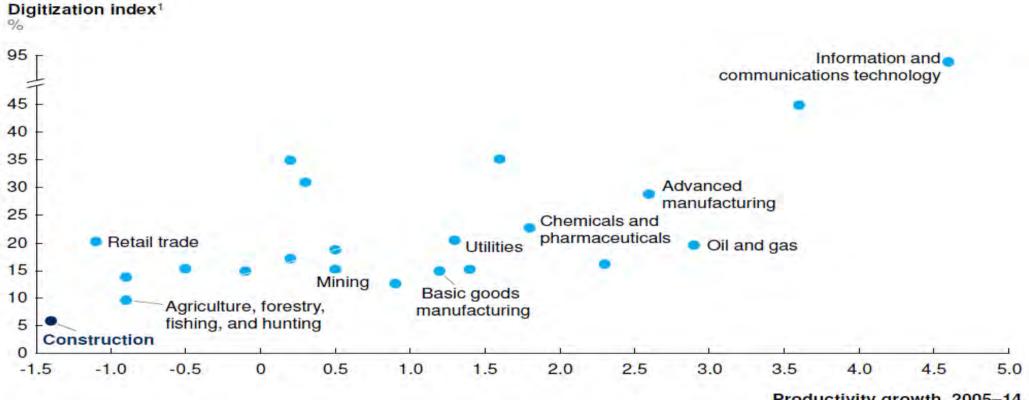
20 year growth differential

Mckinsey analysis

Digitalization increases Productivity significantly

1 The impact numbers have been scaled down from a best case project number to reflect current levels of adoption and applicability across projects, based on respondents to the MGI Construction Productivity Survey who responded "agree" or "strongly agree" to the questions around implementation of the solutions.

2 Range reflects expected difference in impact between emerging and developed markets.


Technical Forum / anton.demarmels@ammann-group.com

voivo Construction Equipment Building Tomorrow

19.10 2018

Construction today at the bottom of adoption rate for Digitilisation

Productivity growth, 2005–14

Compound annual growth rate, %

Department, Name, Document name, Security class 10 Date

Motivation for Harmonized M2M Communication

Clear statement of our Customers

Construction Equipment Forum 2018

Hannover - 09. / 10.10.2018

Let's start with cross-manufacturer standardization.... ... otherwise real digitization on our construction sites is impossible

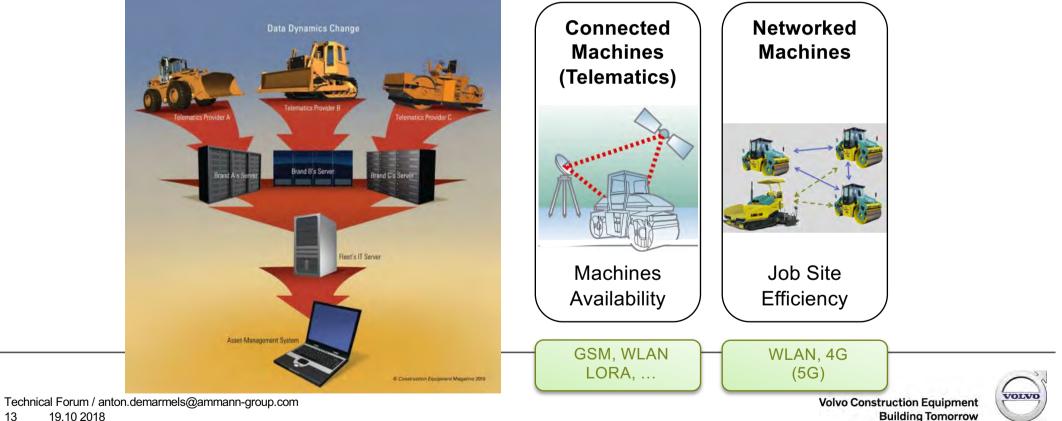
Beginnen wir endlich mit herstellerübergreifender Standardisierung sonst ist echte Digitalisierung auf unseren Baustellen unmöglich !

> reference: M. Lüddemann

Volvo Construction Equipment Building Tomorrow

Technical Forum / anton.demarmels@ammann-group.com 11 19.10 2018

EAPA/CECE Working group


- Amman Anton Demarmels (also chairman of the CECE group for Road machunery
- Caterpillar Kevin.J.Lueschow, Jean-Jacques Janosch, Holger Kellerbauer, Jeremy.j.Wilson
- Dynapac Ulf Siemen
- Q Point Lukas Reicher
- Topcon Paul Conlon, Michael Kaak, Raimo VIIstaedt
- Trimble Geoffrey Kirk
- Veidekke Geir Lange
- Voegele Arnold Rutz, Stephan Weller
- Volvo Hans-Juergen Vogel

Department, Name, Document name, Security class 12 Date

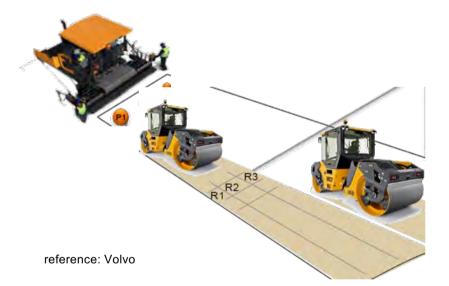
Motivation for Harmonized M2M Comm

Proprietary solutions (too) complex for Mixed Fleet

13 19.10 2018

Working Group Results (activity 1)

General Findings


- 1) Common view on data to exchange
- 2) Data defined (39 data, not yet error codes)

6 for site, 6 for position,13 for machines in general,7 on paving, 7 on compaction

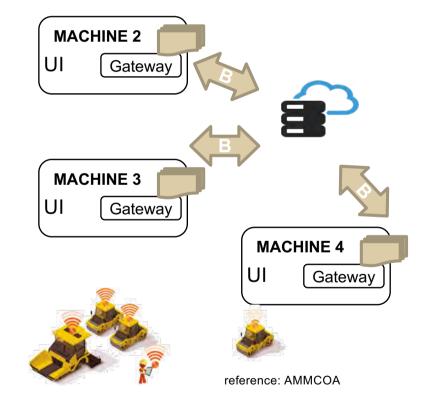
- 3) Data format defined: JSON
- 4) Real time or slow communication

Technical Forum / anton.demarmels@ammann-group.com 14 19.10 2018

Harmonized M2M Communication

4 Use Cases

Case	Sender	Description	Data Set	Exchange Type	
A	all	synchronization) Julic of machine, SN, machine model, temp. measuring principle, screed max. width left (from center), screed max. width right (from center), machine weight er Roller definition (machine definition) UUID of machine, SN, machine model, compaction measuring principle, compaction principle rear, cxcitation principle front, excitation rear, exictation front, drum width, machine weight/axis load Transfer of temperature and vibration status UUID of machine, GPS position,: driving speed, driving direction, crab		on demand _on change	
Вр	Paver			at start _ on request	
Br	Roller			at start _ on request	
с	Roller			periodically _ on change	
D	Paver	Transfer of temperature and speed	UUID of machine, GPS position, driving speed, paving status, screed width left, screed width right, asphalt surface temperature, <i>ambient air temperature (optional), driving direction (optional)</i>	on demand _on change	


reference: AMMCOA

Technical Forum / anton.demarmels@ammann-group.com 15 19.10 2018

Working Group Results

Basic Use Cases

Volvo Construction Equipment Building Tomorrow

Technical Forum / anton.demarmels@ammann-group.com 16 19.10 2018

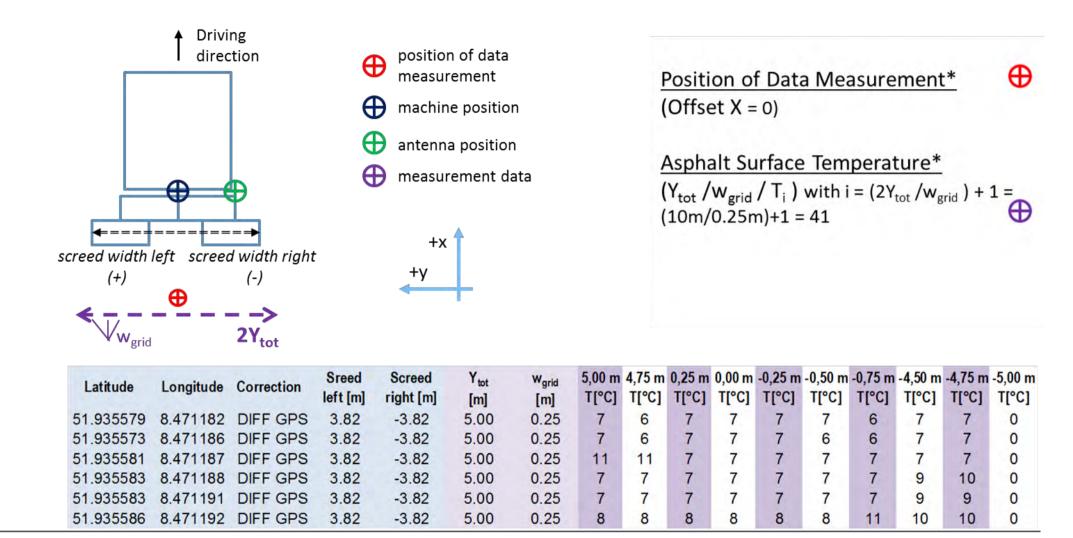
Harmonized M2M Communication

Data set (I of II)

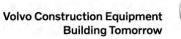
Category	Data description	data	Units	Origin	of data
		type	SI	Paver	Roller
site	Job identifier	string	-	М	М
site	Site name	string	-	0	0
site	Job name	string	-	0	0
site	Layer name	string	-	0	0
site	Material type	string	-	0	0
site	Layer thickness	number	mm	0	0
machine	UUID universally unique identifyer	string	uuid format	М	Μ
machine	SN of machine	string	-	М	Μ
machine	Machine model	string	-	М	М
machine	Temperature measuring principle (spot, scanner)	string	-	М	
machine	Screed maximum width left (from center)	number	m	М	
machine	Screed maximum width right (from center)	number	m	М	
machine	Compaction measuring principle	string	-		М
machine	Compaction principle rear (steel drum / tire)	string	-		0
machine	Compaction principle front (steel drum / tire)	string	-		0
machine	Excitation rear (vibration / oscilation / directed / none)	string	-		М
machine	Exictation front (vibration / oscilation / directed / none)	string	-		М
machine	Drum width	number	mm		М
machine	Machine weight / Axis load	number	kg	0	0
position	Timestamp (UTC)	string	ISO8601 / UTC	М	М
position	Data Position latitude	number	° (WGS84)	М	М
position	Data Position longitude	number	° (WGS84)	М	М
position	Heading	number	0	М	М
position	Correction Signal type / FixQuality	number	-	М	М
position	Signal precision / Standard deviation	number	m	0	0

Technical Forum / anton.demarmels@ammann-group.com

17 19.10 2018


Harmonized M2M Communication

Data set (II of II)


Category	Data description	data	Units	Origin	of data
		type	SI	Paver	Roller
compaction	Driving speed	number	m/s		М
compaction	Driving direction (forward / backward)	number	-1=bw / 0=n / 1=fw		Μ
compaction	Crab steering offset	number	mm		Μ
compaction	Vibration setting rear (small / big / off)	number	1/2/0		Μ
compaction	Vibration setting front (small / big / off)	number	1/2/0		Μ
compaction	Asphalt Surface Temperature(s)	number	К		0
compaction	Compaction measurement value	number	-		0
paving	Driving speed	number	m/s	М	
paving	Driving direction (forward / backward)	number	-1=bw / 0=n / 1=fw	0	
paving	Paving status (on / off = driving not paving)	boolean	-	М	
paving	Screed width left (from center)	number	m	0	
paving	Screed width right (from center)	number	m	0	
paving	Asphalt Surface Temperature(s)	number	К	0	0
paving	Ambient air temperature	number	К	0	0
error	Error codes (tbd)	number	tbd	0	0

Technical Forum / anton.demarmels@ammann-group.com 18 19.10 2018



Department, Name, Document name, Security class 19 Date

Volvo Construction Equipment Building Tomorrow

20

Disruptive Technologies

1	Digital ideas			Today	Future
1	Higher definition surveying and geolocation	S	SKYCATCH	Geological surprises a major reason for delays and cost increases	Integration of 3-D laser scanning, geographical information systems and drone technology dramaticall improving accuracy and speed
2	5-D (or 6-D) Building Information Modeling		Trimble & RIB	Today lack of one single source for real time view of project design, cost and schedule	5-D BIM considers project's cost and schedule in addition to design parameters. Sixth dimension include SCM
3	Digital collaboration and mobility		FIELDWIRE	Industry still relies heavily on paper such as blue- prints, orders, logs, punch lists and progress reports	Online, real-time sharing of information ensures transparency and collaboration for reliable outcome
4	The internet things and advanced analytics		СЦАЧЛІМВИСК	Vast amounts of data not processed, measured or even captured	Sensors and wireless technologies enables intelligent assets for e.g. repair, ordering and energy efficiency
5	Future proof design and construction	□ →	Theming block	Materials usually account for >half of project costs	New building materials, e.g. self- healing concrete, aerogels and nanomaterials and innovative construction approaches, e.g. 3- D printing and preassembled modules can lower cost while increasing speed, quality and safety

machine rental

- Exponential technologies (Can be Disruptive technologies)
- What do we mean with exponential? Developing faster than our common sense, our linear ways of thinking can grasp – while I am speaking computational power, performance of electric energy storages and internet of things have improved in an exponential pattern....
- Human mind grasps linear like age weight age(I am 43 now, then I turn 44 – or my weight, a few kilos up or down, even if it feels like exponential around X-mas ⁽³⁾)
- Exponentials can help us or totally disrupt the industry (examples like Facit, Kodak, Nokia come to mind...)
- Let's look at an ongoing research projects, the electric site!

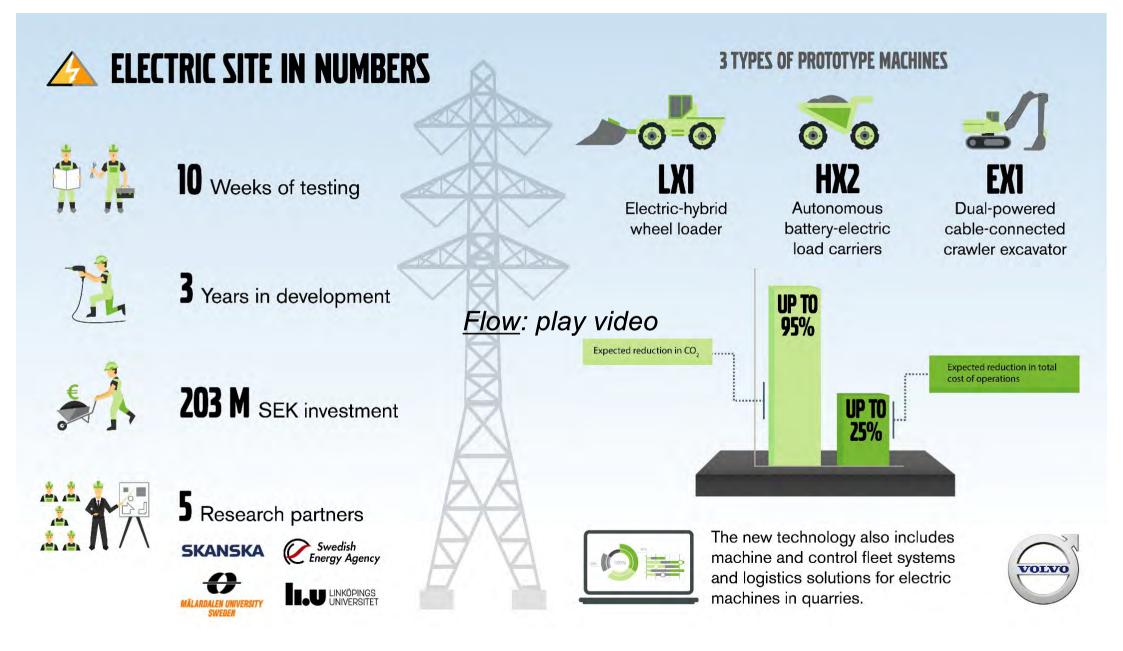
Potential reduction of carbon emissions

95%

ESEARCHPROJE

25%

Potential reduction in cost


ELECTRIC SITE Quarries of the future

Electric Site


- The **HX1** autonomous, battery electric, load carrier is the first-generation prototype, which served as proof of concept for the updated, second-generation prototype, HX2.
- The HX2 autonomous, battery-electric load carrier prototype incorporates shared technologies and components from the Volvo Group. The HX2 also has a completely new drivetrain and a vision system that detects humans or obstacles in the machine's vicinity.
- The **LX1** electric hybrid wheel loader can deliver up to a 50% improvement in fuel efficiency. The machine also offers a significant reduction in emissions and noise pollution compared to its conventional counterparts.

Volvo Construction Equipment

Pioneering 5G technology

