The Institute of Asphalt Technology Irish Branch

Foundation & Pavement Design Analytical Approach

Tom Casey TII Head of Pavements, Construction Materials & Innovation March 13th 2018

Brief Overview of Design Origins

- Empirical trials IN US (AASHO) & UK (RRL)
- UK Road Note 29 in 1960's & 1970's
- Simplified modelling of pavement structure
- Related traffic loading to subgrade strength (CBR) & pavement layers
- TRL LR 1132 in 1984 based on Empirical observations of extended trials
- Concept of long life pavements in 1997 TRL report – indeterminate life beyond 80msa

Structural Design Approach

Definition of a Structure:

built from different interrelated parts with a fixed location on the ground.

responsible for maintaining shape and form under the influence of subjected forces

Structural analysis :

calculates the effects of the forces acting on any component and on the structure overall.

Effectiveness of a structure :

depends on the mechanical properties of the materials from which it is constructed

Pavement as a Structure

Pavement as a Structure

Key Engineering Principles

Fundamental purpose of pavement design :

provide a soil structure system that will carry traffic smoothly and safely with minimum cost

Based primarily on Boussinseq theory (1885)

& Burmisters (1943) formulated a solution for a system having two or three layers subjected to a uniformly distributed load over a circular area

Boussinesq's Method

Theorem :

 point load acting on the surface of a semi infinite solid produces a vertical stress at any point in addition to lateral and shear stress.

Assumptions :

- soil is elastic, isotropic, homogeneous and semi-infinite.
- the soil is weightless.
- the load is vertical, concentrated acting on the surface.
- Hook's Law applicable: constant relationship between stress and strain

Pavement as Layered Elastic Model

Assumptions

- Pavement layers extend infinitely in the horizontal direction
- The bottom layer (usually the subgrade) extends infinitely downward
- Materials are not stressed beyond their elastic ranges
- The layered elastic approach works with relatively simple mathematical models

Pavement as Layered Elastic Model

Pavement as Layered Elastic Model

Inputs

- Material properties of each layer
 - Modulus of Elasticity (E)
 - Poisson's Ratio (μ)
- Pavement layer thicknesses
- Loading conditions

Modulus of Elasticity (E)

Elastic modulus (Young's modulus) can be determined for any solid material and represents a constant ratio of stress and strain:

Elastic: ability to return to its original shape immediately after loading Most materials are considered to be elastic

Poisson's Ratio (µ)

Poisson's ratio - ratio of transverse to longitudinal strains of a loaded specimen. can vary from 0 to about 0.5. Generally, "stiffer" materials will have lower ratio

Pavement as Layered Elastic Model Outputs

- Stress: internally distributed forces experienced within the pavement structure (N/m², Pa)
- Strain: displacement due to stress, ratio of change in dimension to the original dimension (mm/mm). normally expressed in terms of microstrain (10⁻⁶)

Location	Response	Required
Bottom of asphalt layer	Horizontal Tensile Strain	Predict fatigue failure in the flexible asphalt material
Top of Intermediate Layer (Base or Subbase)	Vertical Compressive Strain	Predict rutting failure in the base or subbase
Top of Subgrade	Vertical Compressive Strain	Predict rutting failure in the subgrade

Pavement as a Layered Elastic Model

Typical Output Values

TII Future Model Review

Fully Flexible Pavement Design

- Fundamental engineering mechanics as basis for modelling (stress, strain, deformation, fatigue, cumulative damage, etc.)
- Empirical data from laboratory and field performance.
- M-E Mechanics of materials coupled with observed performance.

TII Future Model Review

- Mechanistic empirical based design methods are used or under development in many countries
- Need to obtain information for modelling purposes on factors affecting pavement performances
 - Axle loading
 - Material properties
 - Weather and environmental conditions

 Need to calibrate and validate models to achieve agreement between real performance and estimation

Mechanistic – Empirical Pavement Design overview

Mechanistic – Empirical Pavement Design

- **Key Advantages**
- More robust (better understanding of mechanics of materials)
- Predicts types of distress
- Modular system that allows for incremental enhancement
- •Produces a more reliable design
- •No longer dependent on the extrapolation of empirical relationships
- Excellent for forensic analysis
- Answers "What if...." questions
- Calibrate to Local Materials, Traffic, Climate....

Flowchart of M - E Design Process

Dynamic Modulus, E*

Stiffness

- Property function of:
- Temperature
- rate of loading
- •Age
- binder stiffness
- aggregate gradation
- binder content
- •air voids

Inputs (typical)

- Asphalt mixture properties
 Asphalt binder
- •Air voids

Subgrade

 influences (within c.3m) of the pavement surface structural response of the pavement layers

Inputs

- Layer thickness (infinite)
- Unit weight
- Poisson's ratio
- Layer modulus

Why Change?

- The principal benefit of mechanistic design of pavements is not anticipated as a radically different pavement....
- It is rather a methodology, based on fundamental engineering principles to enable rapid analysis of changes to material properties and traffic loading

Mechanistic-Empirical Design

Mechanistically calculate pavement response (i.e., stresses, strains, and deflections) due to:

- Traffic loading
- Environmental conditions

Evaluate damage over time

Empirically (validate) predictions of pavement distresses to observed field performance over time,

- Cracking
- Rutting

What will we gain

- More realistic pavement characterisation
- Evaluate new materials
- Better understanding of pavement performances
- Future enhanced or improved knowledge can be easily implemented
- Evaluate effects of new loading conditions such as increased loads, higher tyre pressure and multiple axle

Why Change?

For time and the world do not stand still. Change is the law of life. And those who look only to the past or the present are certain to miss the future.

- John F. Kennedy

tom.casey@tii.ie

